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Computational Study of Propagating Fronts
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Velocities and other features of propagating fronts in the lattice-gas model
analyzed by Bramson et al. are computed by Monte Carlo simulation. The
propagation velocity v(y) is found to converge slowly to its asymptotic depen-
dence on the exchange-rate parameter y. The number density of occupied sites in
the “interaction zone” (extending from the forwardmost occupied to the rear-
most unoccupied site) appears to converge to 2/3 for large y. Spatial profiles of
site occupancy and interface number density for finite y are compared to the
profiles originally computed by Fisher using the differential equation obeyed in
the large-y limit. Several significant features inferred from the computations have
not yet been explained analytically.

KEY WORDS: Lattice gas; interacting particie system; velocity selection; dif-
fusion-reaction equation.

1. INTRODUCTION

Lattice-gas models that obey diffusion-reaction equations in a
hydrodynamic limit are useful for identifying sclection mechanisms govern-
ing diffusion-reaction systems.’’) In some instances, the lattice-gas model
may be of interest in its own right because it may represent physical
phenomena not only in the hydrodynamic limit, but also away from the
limit, where diffusion-reaction equations are not applicable. Such a model
has been formulated and analyzed by this author with reference to tur-
bulent flame propagation in fuel-air mixtures.®

A special case of the model has been analyzed by Bramson er al'®
There it is shown that the velocity of a front propagating through the lat-
tice gas obeys a selection principle that is consistent with the well-known

! Sandia National Laboratories Livermore, California 94550.
921

0022-4715/86/1200-0921805.00/0 1986 Plenum Publishing Corporation



922 Kerstein

43) governing the differential equation obtained

velocity-selection principle
in the hydrodynamic limit.

Here, some computational results are presented for the version of the
model studied by Bramson et al.®®’ The computations address the rate of
convergence to the hydrodynamic limit and lattice-gas properties in that
limit, some of which have no continuum analog. The results suggest some

simple relationships that have not yet been obtained analytically.

2. MODEL FORMULATION AND MOTIVATION

The lattice-gas model, as formulated by Bramson et al,?’ is briefly
recapitulated. Sites labeled by integers - oo <i< 400 are occupied or
unoccupied, represented by values 1 and 0, respectively, of the state
variable #(i). The state may change due to either an exchange of state
between a pair of adjacent sites (expressed by Bramson er al. as a particle
jump) or a creation event. Each pair of adjacent sites exchanges states at a
rate y/2. Each unoccupied site 7 is changed to occupied (particle creation)
at a rate [n(i—1)+n(i+1)]/2.

Starting, say, from the step-function initial condition # = 0 for positive
I, otherwise n=1, the propagation velocity v is defined as the long-time
limit of the number of creation events per unit time. Several equivalent
definitions have been identified,® as elaborated shortly. Defining the site
occupancy as u(i)=P[n(i)=1] and rescaling length according to
x=i/\/;, we find that in the hydrodynamic (large-y) limit, u(x, ¢) obeys
the diffusion-reaction equation

du 13°u

a e tlmw (1

According to the selection principle'*® governing diffusion-reaction

equations of this type [with mild regularity conditions imposed on
u(x, 0)], u(x, t) converges at large ¢ to the traveling-wave form u(x, t)=

u(x —v, t/ﬁ ) with propagation velocity
v.=(2y)"? (2)

The subscript ¢ denotes the velocity for the continuum model, Eq. (1), with
velocity expressed in the unscaled coordinate i. This result also follows
directly from analysis of the large-y limit of the lattice-gas model.>’

It is useful to define the number density of interfaces at i to be f(i)=
P[n(i) #n(i+1)]. The expected total number of interfaces, i.e., sites with
state different from the neighbor on the right, is {F> =3 _ _ f(i). Inter-



Propagating Fronts in a Lattice-Gas Model 923

faces play a key role because all changes of the state variable occur at inter-
faces.

For finite vy, the lattice-gas propagation velocity not only departs from
the form given by Eq. (2), but converges in the limit y — 0 to a distinct
form,>?

v=(147y)/2 3)

Comparison of Eqs. (2) and (3) indicates that the transition between limits
is nontrivial, and, in fact, no theory of this transition exists. Thus, the lat-
tice-gas model raises significant mathematical questions not only in the
hydrodynamic limit, but also in regimes that have no known continuum
representation.

The transition between limits is also of physical interest with respect to
the combustion application that originally motivated the model. In a tur-
bulent, burning fuel-air mixture, two processes contribute to the time-
evolving partition of the mixture into unburned and burned zones. First,
turbulent convection stirs the mixture in a manner that can often be
modeled adequately as a diffusion process.® In the lattice-gas model, the
pair-exchange process induces a random walk of the particles with dif-
fusivity y/2, which is interpreted® as the turbulent diffusivity. Second,
unburned mixture is converted to burned as the flame front penetrates the
unburned zone, with a mass conversion rate per unit interfacial area which
is taken, for modeling purposes, to be constant. In the lattice-gas model,
flame front penetration is represented by the creation process, with the
penetration rate normalized to 1/2. With this normalization, y represents a
ratio of turbulence intensity to flame front penetration rate. Experimentally
accessible values of this ratio range from small values for which Eq. (3) is
valid to large values for which Eq. (2) is valid. Computational results span-
ning this range of values have been found to be in agreement with the
measured y dependence of the burning rate of turbulent fuel-air mixtures.®
(Note: In Ref. 2, y is denoted as D.)

Alternative definitions of the propagation velocity are now introduced
and interpreted physically in the context of the combustion application.
The aforementioned definition, namely the rate of particle creation,
corresponds to the total rate of mass conversion from unburned to burned.
An alternative definition of the propagation velocity is

v={(F>)2 4)

reflecting the fact that creation events occur with a rate 1/2 at each inter-
face. Since the burning rate of the fuel-air mixture is the local penetration
rate times the surface area of the interface (“flame front”) separating the
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burned and unburned zones, we infer that {(F) is a representation of this
interfacial area. More concretely, the lattice-gas model may be viewed as a
discretized model of a line of sight through the fuel-air mixture, with {(F)
interpreted as the mean number of times the line intersects the highly con-
voluted flame front.

Another equivalent'® definition employed here is

L ,
5 t5 Pt —1)=1] (3)

U=

where i, =max{i:q(i)=1}. This definition has no obvious physical inter-
pretation.

For analytical purposes, it has proven useful to choose a spatial coor-
dinate moving with the front, e.g, by expressing site location as i—1i,.
Computations are most conveniently performed with respect to the spatial
coordinate i—i,+ 1, where i,=min{i:#n(i)=0}. Computational results
characterizing the spatial structure of the propagating front are most con-
veniently interpreted using the coordinate j=i— ¢, where the “center of
propagation” ¢ is defined as the total number of creation events that have
occurred. At any instant, the number of unoccupied sites in the interval
—o0<j<0 is equal to the number of occupied sites in the interval
0 < j< oo, because exchange events change these quantities by equal
amounts, while the changes induced by creation events are subsumed in the
updating of c.

3. COMPUTATIONAL METHOD

Computations were performed using two different methods, so that the
results could be verified by cross-checking. In the first method, the vector
of state variables #(i) is represented by a string of 0’s and 1’s, starting from
the step-function initial condition specified earlier. Only the interval
extending from the leftmost 0 to the rightmost 1 need be represented, since
changes of state occur only at interfaces. (As such changes occur, the inter-
val is updated as needed.) Assume that the interval contains # sites at some
instant. An integer 0 < j<n is selected at random. If (/) ##5(j+ 1), then
sites j and j+ 1 undergo an exchange event with probability y/(y + 1), or a
creation event with probability 1/{(y+1). [Recall that #(0)=1 and
n(n+1)=0.] If the event changes the number F of interfaces, then F is
updated. ¢ is incremented by unity for each creation event.

In the second method, only a list of interfaces is stored in memory, so
an integer 1< j<F is randomly selected to determine the interface at
which the next event occurs. In all other respects, the computation is
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analogous to the first method. Though the difference between the methods
may seem minor, the details of implementation are sufficiently disparate so
that the two methods provide a cross-check of the results.

The first two definitions of v in Section 2 require estimates of ¢/t and
(F>, respectively, where ¢ is the elapsed time and the brackets denote a
time average. If the jth event leaves the system in a state with F, interfaces,
any of 2F; events (an exchange or a creation at any of F; mterfaces) may
occur next The exchange rate is y/2 per interface, while the creation rate is
1/2 per interface, giving a next-event rate of (y 4 1) F/2. The time interval 1,
until the next event is therefore exponentially distributed with mean
[(y+1)F;/2]". The elapsed time until the kth event is 7= k207 An
unbiased estimate of ¢ is obtained by replacing ¢, by its mean value, giving

k—1 ( 9 k=1
=y [’*Z“F] S F (6)

j=0 R e

The advantage of this formulation is that the generation of random num-
bers to select values of the time intervals t; is avoided. Likewise, an
unbiased estimate of the time average of any statistic 4 governing the
system is obtained by replacing the definition (A)> ="' Y4 A1, by

— / 1
(A) = Z A_,F_;l/ Y F! (7)
j=0 j=0
where Eq. (6) has been used to estimate . In particular, this gives

(Fy= k] Z F (8)
=0

These expressions are used to evaluate all time-averaged quantities dis-
cussed in the next section. However, statistics are not gathered during the
period of transient relaxation from the initial step function. In each
simulated realization, the number of events devoted to transient relaxation
is equal to the number & of subsequent events for which statistics are
gathered. £ is deemed to be sufficiently large if velocity estimates based on
k events and k/10 events, respectively, agree within statistical uncertainty,
and if estimates for given k based on the different definitions of velocity
likewise agree. In practice, the latter is found to be the more stringent

criterion.

4. RESULTS AND DISCUSSION

Table I displays estimates of the propagation velocity and other quan-
tities for y values ranging from 10 ' to 10°. Velocity estimates are divided
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Table I. Velocity Estimates and Interaction-Zone Statistics for
Computations with Indicated Values of the Exchange-Rate Parameter y
and the Number k of Events Contributing to the Estimate“

Interaction zone

Number Number

b k v,/v, 0,/V, v3/v, of I's of 0’s
0.1 104 1.222 1.228 1.226 0.076 0.051 (S)
1.225 1.227 — — — 1y
1 103 0.6343 06329  0.6368 0.745 0470 (S)
0.6343  0.6343 — — — (I
10 10° 06137 06185  0.6187 6.28 361 ()
0.6020  0.5969 — — — (I
10 106 06197 06194 06183 6.33 3.60 (S)
0.6157  0.6206 — — — (I
100 10.6 07216 07281 0.7071 39.29 20.67 (S)
07052 0.7117 — — — (1)
100 5x 108 07117  0.7085  0.7152 3793 19.97 (S)
0.7124  0.7137 — — — (0
1000 5x 108 0.8320 0.8364  0.7010 186.05  102.80 (S)
5x 107 0.7992  0.7953 08184 187.30 92.90 (S)

¢ Results for three different definitions (see text) v,, v,, and v5 of the propagation velocity are
shown. (v, is the propagation velocity in the continuum limit.) For the first two definitions,
results are shown for interface-based (I} as well as site-based (S) computations. Also shown
are the mean numbers of occupied sites (1’s) and unoccupied sites (0’s) in the interaction
zone, extending from the forwardmost 1 to the rearmost 0.

by v., given by Eq. (2), in order to highlight the convergence to large-y
asymptotic behavior. The first velocity estimate is based on the particle-
creation definition, v, = ¢/t. The second, “interface” definition v, is based
on Eq. (4), with Eq. (8) used to estimate {F). The third definition v, is
based on Eq. (5), where the indicated probability is computed by applying
the time-averaging procedure of Eq. (7).

Estimates are shown from both the site-based (S) and the interface-
based (I) computations, providing a cross-check as well as an indication of
statistical uncertainty. For each y > 1, results are shown for two values of k
to provide an indication of transient effects. For y = 10 and 100, only at the
largest k value is the spread of the estimates v,, v,, and v; roughly the same
as the spread between (S) and (I) estimates for a given defimition of v. The
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increase of relaxation time with increasing y rendered computations for
v~ 10* or larger intractable with the available computational resources.

The most noteworthy feature of the velocity estimates is the slow con-
vergence to large-y asymptotic behavior. For y > 10, each decade increase
in y increases v/v, by about 0.09, indicating a logarithmic dependence on y.
This slow convergence indicates the need for caution in applying
asymptotic results such as Eq. (2) to experimental results obtained at finite
7.*) In contrast, the convergence to the small-y asymptotic behavior given
by Eq. (3) is rapid. [Equations (2) and (3) predict v/v,=1.230 for y=0.1
and 0.707 for y =1.]

Other quantities displayed are the mean numbers of 1’s and O,
respectively, in the “interaction zone,” extending from the forwardmost 1
(site i) to the rearmost O (site ;). The results suggest that the number den-
sity of I’s in the interaction zone converges to 2/3 for large y. This con-
vergence appears to be more rapid than the velocity convergence. These
observations have not yet been explained analytically.

The interaction zone and quantities characterizing it have no obvious
continuum analogs, indicating that even in the hydrodynamic limit, the lat-
tice gas may exhibit mathematically interesting properties that are not cap-
tured by the diffusion-reaction equation (1).

Another interesting feature with no continuum analog is the dis-
tribution of the number z of consecutive unoccupied sites immediately
behind the forwardmost occupied site (site i,). It has been conjectured”
that for large v, this distribution is approximately exponential in z, i.e., of
the form

plz)=(1—e He %, z=0,1,2,. (9)

where the y dependence of A follows from comparison to Egs. (2) and (5).
Namely, z=0 if and only if #(i, —1)=1, so p(0) can be substituted for
Pln(i,—1)=1] in Eq. (5). In conjunction with Eq. (2), the large-y limit
gives

A= (8/y)'"? (10)

The slow convergence of v; to its asymptotic y dependence, shown in
Table I, indicates that the inferred y dependence of 4 will be exhibited only
at y values higher than those of Table I. However, the exponential depen-
dence on z for given y is obeyed at computationally accessible y values, as
illustrated by results for y = 100 and k£ = 5 x 10%, shown in Fig. 1. The value
of A inferred from this computation is about one-third smaller than the
value predicted by Eq. (10).

Finally, computed spatial profiles of site occupancy {#(;j)) and inter-
face number density {f(j)> are compared to profiles of their continuum
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z
Fig. I. Plot of —1In p(z) versus number - of consecutive unoccupied sites immediately
behind the forwardmost occupied site, where p(z) is the probability of = such sites, computed
for 7= 100, k = 5 x 10% The fitted line has slope 0.212, in contrast to the asymptotic prediction

J = (8/7)2 = 0.283.

analogs. Figure 2 shows computed profiles of site occupancy for two vy
values. The profiles are plotted with respect to the reduced coordinate
X = j/ﬁ , where j=1i—c, so that they are directly comparable to the con-
tinuum quantity u(x), which is also shown. (Recall that ¢ is the “center of
propagation.”) u(x) is the numerically computed solution (originally
obtained by Fisher®) of the equation

1 0%u ou
S A w1 —wy=0 "
Fae TV 2 g rull-w (11)
10— —
08 | .
-
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0.0 1 L T
-5  -25 0 2.5 5

reduced coordinate, x

Fig. 2. Site occupancy versus reduced coordinate x :j/\/; for (---) y=10 and (- -) y=100.
(——) The continuum profile », based on Eq. (11).
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This equation for the steady-state profile u(x) is obtained by substituting
u(x, t)=u(x—v(.t/\/;), with v, =(2y)"?, into Eq. (1). Fisher provides a
detailed discussion of the regularity conditions that determine the solution
of Eq.(11), which corresponds to the steady-state profile obtained after
relaxation, according to Eq. (1), from the initial step-function profile.

It is evident from Fig. 2 that convergence to the continuum profile is
slow. This may be a reflection of the slow convergence of the propagation
velocity to its continuum behavior. If the coordinate rescaling is expressed
as x:jﬁ/v[, then the effect of the slow convergence to v, may be
mitigated by choosing instead the reduced coordinate x = jﬁ/v, where v is
a computed velocity estimate. In particular, defining ¢ = v/v,, the results of
Table I suggest values #=0.62 and 0.71 for y = 10 and 100, respectively.

The site-occupancy profiles are plotted with respect to this alternative
coordinate in Fig. 3. The greatly improved convergence lends support to
the alternate method of rescaling the coordinate at finite y. As yet, there is
no theoretical explanation of this observation that departures from
asymptotic behavior manifest themselves primarily as corrections to coor-
dinate rescaling.

Similar inferences are drawn from comparison of interface number-
density profiles plotted in Figs. 4 and 5 with respect to uncorrected and
corrected coordinates, respectively. Again, convergence to the continuum
analog, in this case 2u(1 — u), is more rapid in the corrected coordinate.

Figures 4 and 5 raise a new question, because simple considerations
would appear to rule out interface number-density values above 1/2.

1.0
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S 0.4
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0.2
0.0 | | l” R .
-5 -2.5 0 2.5 5

reduced coordinate, x

Fig. 3. Site occupancy versus reduced coordinate x:j/(v‘\/)j) for (--) y=10, =062 and
(=-) y=100, 6=0.71 (¢ corrects for the lack of convergence to the asymptotic propagation
velocity. ) ( ) The continuum profile u.
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Fig. 4. Interface number density versus reduced coordinate x:j/ﬂ for (---) y=10 and
(=—) y=100. (——) The continuum profile 2u(l — u).

Namely, a statistically independent distribution of occupied sites at a
location with occupancy u would give an interface density 2u(1 — u), which
never exceeds 1/2. Complete statistical independence is achieved only in the
limit y —» oo. For finite y, the creation process would appear to introduce
only positive correlations between the states of nearby sites, thereby
lowering the interface number density.

The explanation for computed densities exceeding 1/2 1s that the origin
of coordinates has been chosen at the instantaneous center of propagation,

0.6 T T
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0.4

0.3

0.2

interface density

01

0.0 : - -
-5 -2.5 0 2.5 5

reduced coordinate, x

Fig. 5. Interface number density versus reduced coordinate x=j/(ﬁ\/;) for (--) y=10,
£=0.62 and (--) y= 100, $=0.71. (——) The continuum profile 2u(1 — u).
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a quantity that fluctuates about the ensemble-averaged center of
propagation, ¢=wvt. The location of the instantanecous center may be
positively correlated with local fluctuations in the interface number density,
thereby allowing the computed quantity to exceed 1/2. As evidence that
this may occur, consider the interface number-density profile for y =0. In
this case, the site-occupancy profile is always a step function, with a single
interface located at j=0. Therefore the interface number density is unity at
J=0 and zero elsewhere. As y increases, it is reasonable to expect that the
interface number density at j= 0 decreases monotonically, approaching 1/2
in the large-y limit. As yet, there is no analytical confirmation of this con-
jecture.

In summary, the computational results are consistent with analytical
results derived for the hydrodynamic limit, although the computations
indicate a slow rate of convergence to that limit. The computations suggest
additional features of the lattice-gas model that may be of theoretical
interest. These features may also prove to be of physical interest in the con-
text of the combustion application that motivated the model.
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