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Velocities and other features of propagating fronts in the Iattice-gas model 
analyzed by Bramson et al. are computed by Monte Carlo simulation. The 
propagation velocity v(7) is found to converge slowly to its asymptotic depen- 
dence on the exchange-rate parameter ,/. The number density of occupied sites in 
the "interaction zone" (extending from the forwardmost occupied to the rear- 
most unoccupied site) appears to converge to 2/3 for large 7. Spatial profiles of 
site occupancy and interface number density for finite 7 are compared to the 
profiles originally computed by Fisher using the differential equation obeyed in 
the large- 7 limit. Several significant features inferred from the computations have 
not yet been explained analytically. 

KEY WORDS: Lattice gas; interacting particle system; velocity selection; dif- 
fusion-reaction equation. 

1. I N T R O D U C T I O N  

Lat t ice-gas  models  that  obey dif fus ion-react ion equat ions  in a 
h y d r o d y n a m i c  l imit  are useful for identifying selection mechan i sms  govern-  
ing dif fus ion-react ion systems. (~1 In some instances,  the la t t ice-gas mode l  
may  be of interest  in its own right  because  it may  represent  physical  
p h e n o m e n a  not  only  in the h y d r o d y n a m i c  limit,  but  also away  from the 
limit, where di f fus ion-react ion equa t ions  are  not  appl icable .  Such a model  
has been fo rmula ted  and  ana lyzed  by  this a u t h o r  with reference to tur-  
bulent  f lame p r o p a g a t i o n  in fuel-air  mixtures.  (2) 

A special case of the mode l  has been ana lyzed  by Bra mson  et  al. (3t 

There it is shown that  the veloci ty  of a front  p r o p a g a t i n g  th rough  the lat-  
tice gas obeys a selection pr inciple  that  is consis tent  with the wel l -known 
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velocity-selection principle (4'5) governing the differential equation obtained 
in the hydrodynamic limit. 

Here, some computational results are presented for the version of the 
model studied by Bramson et al. ~3) The computations address the rate of 
convergence to the hydrodynamic limit and lattice-gas properties in that 
limit, some of which have no continuum analog. The results suggest some 
simple relationships that have not yet been obtained analytically. 

2. M O D E L  F O R M U L A T I O N  A N D  M O T I V A T I O N  

The lattice-gas model, as formulated by Bramson et al., 13) is briefly 
recapitulated. Sites labeled by integers - o o  < i <  +or are occupied or 
unoccupied, represented by values 1 and 0, respectively, of the state 
variable t/(i). The state may change due to either an exchange of state 
between a pair of adjacent sites (expressed by Bramson et al. as a particle 
jump) or a creation event. Each pair of adjacent sites exchanges states at a 
rate 7/2. Each unoccupied site i is changed to occupied (particle creation) 
at a rate [ t / ( i - 1 ) + t / ( i +  1)]/2. 

Starting, say, from the step-function initial condition r/= 0 for positive 
i, otherwise r/= 1, the propagation velocity v is defined as the long-time 
limit of the number of creation events per unit time. Several equivalent 
definitions have been identified, (3) as elaborated shortly. Defining the site 
occupancy as u ( i ) = P [ ~ l ( i ) = l ]  and rescaling length according to 
x=i /x / -7 ,  we find that in the hydrodynamic (large-y) limit, u(x, t) obeys 
the diffusion-reaction equation 

8u 1 c?2u 
& - 2 c g x  2 /- u(1 - u) (1~ 

According to the selection principle (4'51 governing diffusion-reaction 
equations of this type [with mild regularity conditions imposed on 
u(x, 0)], u(x, t) converges at large t to the traveling-wave form u(x, t )=  
u ( x - v , t / x / - ~  ) with propagation velocity 

v c = (27) '/2 (2) 

The subscript c denotes the velocity for the continuum model, Eq. (1), with 
velocity expressed in the unscaled coordinate i. This result also follows 
directly from analysis of the large-7 limit of the lattice-gas model. (3) 

It is useful to define the number density of interfaces at i to be f ( i )  = 
PEr/(/) r r/(i + 1)]. The expected total number of interfaces, i.e., sites with 
state different from the neighbor on the right, is { F ) =  ~F= -o~ f ( i ) .  Inter- 
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faces play a key role because all changes of the state variable occur at inter- 
faces. 

For finite 7, the lattice-gas propagation velocity not only departs from 
the form given by Eq. (2), but converges in the limit ?--* 0 to a distinct 
form,(2,3) 

v=  (1 +7)/2 (3) 

Comparison of Eqs. (2) and (3) indicates that the transition between limits 
is nontrivial, and, in fact, no theory of this transition exists. Thus, the lat- 
tice-gas model raises significant mathematical questions not only in the 
hydrodynamic limit, but also in regimes that have no known continuum 
representation. 

The transition between limits is also of physical interest with respect to 
the combustion application that originally motivated the model. In a tur- 
bulent, burning fuel-air mixture, two processes contribute to the time- 
evolving partition of the mixture into unburned and burned zones. First, 
turbulent convection stirs the mixture in a manner that can often be 
modeled adequately as a diffusion process. {6) In the lattice-gas model, the 
pair-exchange process induces a random walk of the particles with dif- 
fusivity 7/2, which is interpreted (2) as the turbulent diffusivity. Second, 
unburned mixture is converted to burned as the flame front penetrates the 
unburned zone, with a mass conversion rate per unit interfacial area which 
is taken, for modeling purposes, to be constant. In the lattice-gas model, 
flame front penetration is represented by the creation process, with the 
penetration rate normalized to 1/2. With this normalization, }, represents a 
ratio of turbulence intensity to flame front penetration rate. Experimentally 
accessible values of this ratio range from small values for which Eq. (3) is 
valid to large values for which Eq. (2) is valid. Computational results span- 
ning this range of values have been found to be in agreement with the 
measured 7 dependence of the burning rate of turbulent fuel air mixtures. {2) 
(Note: In Ref. 2, 7 is denoted as D.) 

Alternative definitions of the propagation velocity are now introduced 
and interpreted physically in the context of the combustion application. 
The aforementioned definition, namely the rate of particle creation, 
corresponds to the total rate of mass conversion from unburned to burned. 
An alternative definition of the propagation velocity is 

v -= <F>/2 (4) 

reflecting the fact that creation events occur with a rate 1/2 at each inter- 
face. Since the burning rate of the fuel-air mixture is the local penetration 
rate times the surface area of the interface ("flame front") separating the 
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burned and unburned zones, we infer that ( F )  is a representation of this 
interfacial area. More concretely, the lattice-gas model may be viewed as a 
discretized model of a line of sight through the fuel-air mixture, with ( F )  
interpreted as the mean number of times the line intersects the highly con- 
voluted flame front. 

Another equivalent I3) definition employed here is 

1 7 
v=~+~P[q( i ,  - 1)=  13 (5) 

where i t = m a x { i :  r/(i)= 1 }. This definition has no obvious physical inter- 
pretation. 

For  analytical purposes, it has proven useful to choose a spatial coor- 
dinate moving with the front, e.g., by expressing site location as i - i  r .  

Computations are most conveniently performed with respect to the spatial 
coordinate i - i t + l ,  where it=min{i:~l(i)=O }. Computational results 
characterizing the spatial structure of the propagating front are most con- 
veniently interpreted using the coordinate j =  i - c ,  where the "center of 
propagation" c is defined as the total number of creation events that have 
occurred. At any instant, the number of unoccupied sites in the interval 
- o o  < j~<0  is equal to the number of occupied sites in the interval 
0 < j <  oe, because exchange events change these quantities by equal 
amounts, while the changes induced by creation events are subsumed in the 
updating of c. 

3. C O M P U T A T I O N A L  M E T H O D  

Computations were performed using two different methods, so that the 
results could be verified by cross-checking. In the first method, the vector 
of state variables t/(i) is represented by a string of 0's and l's, starting from 
the step-function initial condition specified earlier. Only the interval 
extending from the leftmost 0 to the rightmost 1 need be represented, since 
changes of state occur only at interfaces. (As such changes occur, the inter- 
val is updated as needed.) Assume that the interval contains n sites at some 
instant. An integer 0 ~<j~< n is selected at random. If r/(j)va r/(j + 1), then 
sites j and j + 1 undergo an exchange event with probability 7/(7 + 1 ), or a 
creation event with probability 1/(7+1).  [Recall that t / ( 0 ) = l  and 
q(n + 1) = 0.] If the event changes the number F of interfaces, then F is 
updated, c is incremented by unity for each creation event. 

In the second method, only a list of interfaces is stored in memory, so 
an integer 1 <~j<<.F is randomly selected to determine the interface at 
which the next event occurs. In all other respects, the computation is 
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analogous to the first method. Though the difference between the methods 
may seem minor, the details of implementation are sufficiently disparate so 
that the two methods provide a cross-check of the results. 

The first two definitions of v in Section 2 require estimates of c/t and 
( F ) ,  respectively, where t is the elapsed time and the brackets denote a 
time average. If the j th  event leaves the system in a state with Fj interfaces, 
any of 2Fj events (an exchange or a creation at any of Fj interfaces) may 
occur next. The exchange rate is 7/2 per interface, while the creation rate is 
1/2 per interface, giving a next-event rate of (7 + 1 )Fj/2. The time interval rj 
until the next event is therefore exponentially distributed with mean 

k 1 [ ( 7+  1)F//2] -1- The elapsed time until the kth event is t = Z j = o  rj. An 
unbiased estimate of t is obtained by replacing zj by its mean value, giving 

/=o 2 ? +  1 /=0E F : I  (6) 

formulation is that the generation of random hum- 
of the time intervals z/ is avoided. Likewise, an 

the time average of any statistic A governing the 
replacing the definition ( A )  = t 1 Z/:ok ~ A/z /by  

The advantage of this 
bers to select values 
unbiased estimate of 
system is obtained by 

k 1 /k 1 
( A > =  E A i F i l /  E F- I  

i = 0  " ~ j = O  / 

where Eq. (6) has been used to estimate t. In particular, this gives 

!k l 
(F)=k/" ~, F: 

/ =  0 

(7) 

(8) 

These expressions are used to evaluate all time-averaged quantities dis- 
cussed in the next section. However, statistics are not gathered during the 
period of transient relaxation from the initial step function. In each 
simulated realization, the number of events devoted to transient relaxation 
is equal to the number k of subsequent events for which statistics are 
gathered, k is deemed to be sufficiently large if velocity estimates based on 
k events and k/lO events, respectively, agree within statistical uncertainty, 
and if estimates for given k based on the different definitions of velocity 
likewise agree. In practice, the latter is found to be the more stringent 
criterion. 

4. RESULTS A N D  D ISCUSSION 

Table I displays estimates of the propagation velocity and other quan- 
tities for 7 values ranging from 10 1 to 10 3. Velocity estimates are divided 
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Table I. Veloci ty  Estimates and Interact ion-Zone Statistics for 
Computat ions w i th  Indicated Values of the Exchange-Rate Parameter 7 

and the Number  k of Events Contributing to the Estimate" 

Interaction zone 

Number Number 
,/ k v l / v  ,. v2/v, ,  v3/v, ,  of l's of 0's 

0.1 l04 1.222 1.228 1.226 0.076 0.051 (S) 
1.225 1 .227  - -  (I) 

1 105 0.6343 0.6329 0.6368 0.745 0.470 (S) 
0.6343 0.6343 - -  (I) 

10 105 0.6137 0.6185 0.6187 6.28 3.61 (S) 
0.6020 0.5969 - -  (I) 

10 106 0.6197 0.6194 0.6183 6.33 3.60 (S) 
0.6157 0.6206 - -  - -  (I) 

100 10. 6 0.7216 0 . 7 2 8 1  0.7071 39.29 20.67 (S) 
0.7052 0.7117 - -  - -  - -  (I) 

100 5 • 106 0.7117 0.7085 0.7152 37.93 19.97 (S) 
0.7124 0.7137 - -  (I) 

1000 5 x 106 0.8320 0.8364 0.7010 186.05 102.80 (S) 
5 x 107 0.7992 0.7953 0.8184 187.30 92.90 (S) 

Results for three different definitions (see text) vl, v2, and v3 of the propagation velocity are 
shown. (v,. is the propagation velocity in the continuum limit.) For the first two definitions, 
results are shown for interface-based (I) as well as site-based (S) computations. Also shown 
are the mean numbers of occupied sites (l 's) and unoccupied sites (0's) in the interaction 
zone, extending from the forwardmost 1 to the rearmost 0. 

by vc, given by Eq. (2), in order to highlight the convergence to large-7 
asymptotic behavior. The first velocity estimate is based on the particle- 
creation definition, vl = c/t. The second, "interface" definition v2 is based 
on Eq. (4), with Eq. (8) used to estimate ( F ) .  The third definition v3 is 
based on Eq. (5), where the indicated probability is computed by applying 
the time-averaging procedure of Eq. (7). 

Estimates are shown from both the site-based (S) and the interface- 
based (I) computations, providing a cross-check as well as an indication of 
statistical uncertainty. For  each 7 > 1, results are shown for two values of k 
to provide an indication of transient effects. For  ~ = 10 and 100, only at the 
largest k value is the spread of the estimates v~, v2, and v3 roughly the same 
as the spread between (S) and (I) estimates for a given definition of v. The 
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increase of relaxation time with increasing 7 rendered computations for 
7 ~ 104 or larger intractable with the available computational resources. 

The most noteworthy feature of the velocity estimates is the slow con- 
vergence to large-7 asymptotic behavior. For 7 >~ 10, each decade increase 
in 7 increases v/vc by about 0.09, indicating a logarithmic dependence on 7- 
This slow convergence indicates the need for caution in applying 
asymptotic results such as Eq. (2) to experimental results obtained at finite 
7. (2) In contrast, the convergence to the small-7 asymptotic behavior given 
by Eq. (3) is rapid. [Equations (2) and (3) predict v/vc= 1.230 for 7=0.1 
and 0.707 for 7 = 1.] 

Other quantities displayed are the mean numbers of l's and 0's, 
respectively, in the "interaction zone," extending from the forwardmost 1 
(site it) to the rearmost 0 (site it). The results suggest that the number den- 
sity of l's in the interaction zone converges to 2/3 for large 7- This con- 
vergence appears to be more rapid than the velocity convergence. These 
observations have not yet been explained analytically. 

The interaction zone and quantities characterizing it have no obvious 
continuum analogs, indicating that even in the hydrodynamic limit, the lat- 
tice gas may exhibit mathematically interesting properties that are not cap- 
tured by the diffusion-reaction equation (1). 

Another interesting feature with no continuum analog is the dis- 
tribution of the number z of consecutive unoccupied sites immediately 
behind the forwardmost occupied site (site it). It has been conjectured/71 
that for large 7, this distribution is approximately exponential in z, i.e., of 
the form 

p(z) = (1 - e ; ) e - ; : ,  z = 0, 1, 2,... (9) 

where the 7 dependence of 2 follows from comparison to Eqs. (2) and (5). 
Namely, z = 0 if and only if r/(i r -  1)= 1, so p(0) can be substituted for 
P[q(ir-1)= 1] in Eq. (5). In conjunction with Eq. (2), the large-?' limit 
gives 

; = (8 /7 )  ~/2 ( lO)  

The slow convergence of v3 to its asymptotic 7 dependence, shown in 
Table I, indicates that the inferred 7 dependence of 2 will be exhibited only 
at 7 values higher than those of Table I. However, the exponential depen- 
dence on z for given 7 is obeyed at computationally accessible 7 values, as 
illustrated by results for 7 = 100 and k = 5 x 106, shown in Fig. 1. The value 
of 2 inferred from this computation is about one-third smaller than the 
value predicted by Eq. (10). 

Finally, computed spatial profiles of site occupancy (r / ( j ) )  and inter- 
face number density ( f ( j ) )  are compared to profiles of their continuum 
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behind the fo rwardmos t  occupied site, where p(z) is the probabi l i ty  of z such sites, compu ted  
for , /=  100, k = 5 x 106. T he  fitted line has  slope 0.212, in cont ras t  to the asympto t ic  predict ion 
). (8/?)~/2 = 0.283. 

analogs. Figure 2 shows computed profiles of site occupancy for two ? 
values. The profiles are plotted with respect to the reduced coordinate 
x = j/, ,/-7, where j = i -  c, so that they are directly comparable to the con- 
tinuum quantity u(x) ,  which is also shown. (Recall that c is the "center of 

(originally propagation.") u(x)  is the numerically computed solution 
obtained by Fisher Cs)) of the equation 

1 ct2u f~  Ou 
ax- +  /XTx+ u(1 - u ) = 0  

Fig. 2. 
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Site occupancy  versus reduced coord ina te  x =j/ , /~/for ( . . .)  , /=  10 and  ( - )  7 = 100. 

( ) T h e  c o n t i n u u m  profile u, based on Eq. (I 1). 
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This equation for the steady-state profile u(x) is obtained by substituting 
u(x, t)=u(x-v~t/x/-~ ), with v~=(27) u2, into Eq. (1). Fisher provides a 
detailed discussion of the regularity conditions that determine the solution 
of Eq. (11), which corresponds to the steady-state profile obtained after 
relaxation, according to Eq. (1), from the initial step-function profile. 

It is evident from Fig. 2 that convergence to the continuum profile is 
slow. This may be a reflection of the slow convergence of the propagation 
velocity to its continuum behavior. If the coordinate rescaling is expressed 
as x=j,,f2,/v,, then the effect of the slow convergence to vc may be 
mitigated by choosing instead the reduced coordinate x - j , , ~ / v ,  where v is 
a computed velocity estimate. In particular, defining ~ = v/v~, the results of 
Table I suggest values g=0.62 and 0.71 for 7 = 10 and 100, respectively. 

The site-occupancy profiles are plotted with respect to this alternative 
coordinate in Fig. 3. The greatly improved convergence lends support to 
the alternate method of rescaling the coordinate at finite 7. As yet, there is 
no theoretical explanation of this observation that departures from 
asymptotic behavior manifest themselves primarily as corrections to coor- 
dinate rescaling. 

Similar inferences are drawn from comparison of interface number- 
density profiles plotted in Figs. 4 and 5 with respect to uncorrected and 
corrected coordinates, respectively. Again, convergence to the continuum 
analog, in this case 2u(1- u), is more rapid in the corrected coordinate. 

Figures 4 and 5 raise a new question, because simple considerations 
would appear to rule out interface number-density values above 1/2. 
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r e d u c e d  c o o r d T n a f e ,  x 

Fig. 3. Site occupancy versus reduced coordinate x=j/(i)x/~) for (.-.) 7 = 10, ~ =0.62 and 
(--) 7 = 100, ~=0.71 (g corrects for the lack of convergence to the asymptotic propagation 
velocity.) ( ) The continuum profile u. 
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Fig. 4. Interface number  density versus reduced coordinate  x=j/,,/~ for (. . .)  7 =  10 and 
( - - )  7 = 100. ( ) The c o n t i n u u m  profile 2u(1 u). 

Namely, a statistically independent distribution of occupied sites at a 
location with occupancy u would give an interface density 2 u ( 1 -  u), which 
never exceeds 1/2. Complete statistical independence is achieved only in the 
limit 7 ~ oo. For finite 7, the creation process would appear to introduce 
only positive correlations between the states of nearby sites, thereby 
lowering the interface number density. 

The explanation for computed densities exceeding 1/2 is that the origin 
of coordinates has been chosen at the instantaneous center of propagation, 
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Fig. 5. Interface number  density versus reduced coordinate  x=j/(3~) for ( ' " )  y - 1 0 ,  
3=0 . 62  and ( - - )  7 - 100, 3=0.71.  ( ) The c o n t i n u u m  profile 2u(1 - u ) .  
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a quan t i ty  that  f luctuates a b o u t  the ensemble -averaged  center  of 
p ropaga t ion ,  g = v t .  The  loca t ion  of the ins t an taneous  center  may  be 

posi t ively cor re la ted  with local  f luctuat ions  in the interface n u m b e r  density,  
thereby a l lowing the c o m p u t e d  quan t i t y  to exceed 1/2. As evidence that  
this m a y  occur,  cons ider  the interface number -dens i ty  profile for 7 = 0. In 
this case, the s i t e -occupancy  profile is a lways  a step function,  with a single 
interface loca ted  at  j = 0. Therefore  the interface n u m b e r  densi ty  is uni ty  at 

j =  0 and zero elsewhere. As 7 increases,  it is reasonable  to expect  tha t  the 
interface number  dens i ty  at  j = 0 decreases  mono ton ica l ly ,  a p p r o a c h i n g  1/2 

in the large-7 limit. As yet, there  is no analy t ica l  conf i rma t ion  of this con- 
jecture.  

In summary ,  the c o m p u t a t i o n a l  results  are consis tent  with analy t ica l  
results der ived for the h y d r o d y n a m i c  limit, a l though  the c o m p u t a t i o n s  
indicate  a slow rate  of convergence to tha t  limit. The  c o m p u t a t i o n s  suggest 
add i t iona l  features of the la t t ice-gas  mode l  tha t  may  be of theoret ica l  
interest.  These features may  also prove  to be of physical  interest  in the con- 
text of the combus t ion  app l i ca t ion  that  mo t iva t ed  the model.  
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